skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Changhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response. 
    more » « less
  2. Abstract

    High‐power piezoelectric applications are predicted to share approximately one‐third of the lead‐free piezoelectric ceramic market in 2024 with alkaline niobates as the primary competitor. To suppress self‐heating in high‐power devices due to mechanical loss when driven by large electric fields, piezoelectric hardening to restrict domain wall motion is required. In the present work, highly effective piezoelectric hardening via coherent plate‐like precipitates in a model system of the (Li,Na)NbO3(LNN) solid solution delivers a reduction in losses, quantified as an electromechanical quality factor, by a factor of ten. Various thermal aging schemes are demonstrated to control the average size, number density, and location of the precipitates. The established properties are correlated with a detailed determination of short‐ and long‐range atomic structure by X‐ray diffraction and pair distribution function analysis, respectively, as well as microstructure determined by transmission electron microscopy. The impact of microstructure with precipitates on both small‐ and large‐field properties is also established. These results pave the way to implement precipitate hardening in piezoelectric materials, analogous to precipitate hardening in metals, broadening their use cases in applications.

     
    more » « less